首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298892篇
  免费   40534篇
  国内免费   29582篇
电工技术   65481篇
技术理论   11篇
综合类   24146篇
化学工业   41729篇
金属工艺   10348篇
机械仪表   17940篇
建筑科学   13240篇
矿业工程   4715篇
能源动力   13922篇
轻工业   15337篇
水利工程   5566篇
石油天然气   6415篇
武器工业   3267篇
无线电   44210篇
一般工业技术   25689篇
冶金工业   6266篇
原子能技术   5461篇
自动化技术   65265篇
  2024年   687篇
  2023年   4426篇
  2022年   7844篇
  2021年   10057篇
  2020年   10255篇
  2019年   9011篇
  2018年   8277篇
  2017年   11456篇
  2016年   12664篇
  2015年   14643篇
  2014年   17783篇
  2013年   19625篇
  2012年   23876篇
  2011年   26182篇
  2010年   19221篇
  2009年   19100篇
  2008年   20112篇
  2007年   22700篇
  2006年   21038篇
  2005年   17658篇
  2004年   14731篇
  2003年   11768篇
  2002年   9072篇
  2001年   7081篇
  2000年   5625篇
  1999年   4446篇
  1998年   3481篇
  1997年   2770篇
  1996年   2465篇
  1995年   2093篇
  1994年   1861篇
  1993年   1330篇
  1992年   1112篇
  1991年   829篇
  1990年   696篇
  1989年   552篇
  1988年   404篇
  1987年   263篇
  1986年   231篇
  1985年   288篇
  1984年   272篇
  1983年   213篇
  1982年   258篇
  1981年   128篇
  1980年   117篇
  1979年   45篇
  1978年   34篇
  1977年   33篇
  1976年   21篇
  1959年   34篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
41.
吕薇  姜根山  刘月超  张伟 《声学技术》2022,41(6):789-795
为了研究温度分布对于管阵列结构中的声透射特性的影响,以核电站的实际工况为背景,构建了不同的温度场以及周期性变化的非均匀温度场,利用有限元方法进行数值模拟。结果表明:(1)温度分布会改变管阵列声透射频谱的“禁带”宽度以及中心频率位置。在同一介质中,温度变化对频率较高位置的影响大于频率较低的位置。(2)在同样为10℃的温度差下,当水的平均声速为1 653 m·s-1、饱和水蒸气的平均声速为522.5 m·s-1时,介质为水时的禁带宽度及中心频率位置变化较大,即声速大的介质的频谱对于温度的变化更敏感。(3)当温度差在10℃以内,在周期性变化的非均匀温度场和与均匀温度场中管阵列声透射特性在第一中心频率23 996.1 Hz之前,两频谱差别很小,在第一禁带之后会出现明显区别。该研究成果对完善核电站应用的声学检测提供了理论基础。  相似文献   
42.
We propose a self-sustaining power supply system consisting of a “Hybrid Energy Storage System (HESS)” and renewable energy sources to ensure a stable supply of high-quality power in remote islands. The configuration of the self-sustaining power supply system that can utilize renewable energy sources effectively on remote islands where the installation area is limited is investigated. It is found that it is important to select renewable energy sources whose output power curve is close to the load curve to improve the efficiency of the system. The operation methods that can increase the cost-effectiveness of the self-sustaining power supply system are also investigated. It is clarified that it is important for increasing the cost effectiveness of the self-sustaining power supply system to operate the HESS with a smaller capacity of its components by setting upper limits on the output power of the renewable energy sources and cutting the infrequent generated power.  相似文献   
43.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
44.
The incomplete polymerization of graphite carbon nitride (g-C3N4) due to the kinetic problems resulted in its high recombination rate of photo-generated electron-hole pairs. Hence, cyano-containing carbon nitride with coral-like morphology (CCCN) was prepared by the molten salt method with heptazine-based melem as precursor, which presented excellent separation rate of photo-generated electron-hole pairs. SEM exhibited that CCCN owned coral-like morphology which exposed ample active sites and enhanced the capture ability of visible light while FT-IR and XPS demonstrated that cyano groups appearing in coral-like carbon nitride enhanced the separation rate of photo-induced charge carriers. The synergistic effect of coral-like morphology and cyano groups endowed CCCN-15% with superior performance of both the photocatalytic H2 evolution (4207 μmol h?1 g?1) and Cr (Ⅵ) reduction (k = 0.059 min?1), approximately 16.8 and 6.0 times that of g-C3N4, which was comparable among the similar materials. Density functional theory calculation (DFT) revealed that cyano groups decreased the bandgap and strengthened the activation degree of reaction substrate, which enhanced the thermodynamic driving force and the interaction between catalyst and substrate. This work provided a potential strategy for both the renewable energy generation and environmental restoration.  相似文献   
45.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
46.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
47.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
48.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
49.
At present, as the demand for electricity increases in all sectors, there is an urgent need to introduce alternative renewable energy sources into modern energy systems. Renewable energy sources, which consist of solar (photovoltaic, PV), wind and hydro power, are key alternative sources of “green energy’’ energies, but it can also be used to produce “green” hydrogen. Thanks to scientific and technological progress, the cost of photovoltaic solar radiation converters is constantly decreasing at a high rate, which makes it possible to build solar power plants of sufficiently large capacity. In the coming decades, solar energy will become an incentive for the economic development of countries that have the maximum “solar” resource. The Republic of Tajikistan is one of these countries with a high potential for solar energy.The article presents an analysis of the resources and potential of solar energy in the Republic of Tajikistan. The study of electromagnetic transients in networks with photovoltaic solar power plants is performed. The main equations, simulation model and calculations of transients are presented, taking into account changes in voltage on DC buses. An algorithm for controlling the system of automatic control of output parameters is proposed. The analysis of dynamic and static modes in parallel operation of a solar power plant with the grid is carried out. A block diagram and computer model is constructed in the MATLAB package together with Simulink and Power System Blockset.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号